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Abstract—This paper deals with the latency analysis in a two-

dimensional systolic array for matrix multiplication. The latency 

for all possible connection schemes is discussed. In this way there 

is obtained the lower bound of the latency that can be achieved 

using such arrays. 
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I.  INTRODUCTION  

A systolic array is a computing network possessing 

with which a high parallelism can be achieved. These arrays 

are appropriate to solve problems using nested-loop 

algorithms; such is the problem of parallel solution of matrix-

matrix multiplication. The most known properties of the 

systolic arrays are locality, pipeline-ability and regularity. 

More about systolic arrays see [7, 8, 9, 10]. 
In the literature there are known some systolic array 

designs for matrix multiplication with fixed input/output (I/O) 

bandwidth which is n2  (n  is the size of a matrix), and with 

the latency which differs and has different values depending of 
the design. In [1] it is proposed a hexagonal array with the 

latency n3 . Another array with the same latency is proposed in 

[2]. The optimization of this result with the new latency equal 

with n2  is given in [3]. The array with the latency 25n  is 

proposed in [5]. Also in [6] is given an array with 

latency 23n . Optimization of some methods using regular 

iterative algorithms is proposed in [4].The question which 
arises here is about the lower bound of the latency in designing 
systolic arrays. Intuitively that bound would be equal ton . 

II. MATRIX MULTIPLICATION ON SYSTOLIC ARRAYS 

Given two matrices A and B of type nn× , it is a 
computational problem to find their product. If we denote the 
product of A and B by C, then the entries of C can be 
calculated by the following formula: 
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In fact, this example is the simplest case of parallel matrix 
multiplication because the matrices are taken to be quadratic. 
The systolic array is quadratic 2-D such that the elements of 
matrices A and B have to be fed appropriately into the 
Processors of the array (PEs). The array consists of nn×   

PEs. Each PE indexed by i  and j , in each step k , adds a 

partial product kjikba  to the accumulated sum for every ijc . In 

the figure 1 is presented (just the first two cycles of total 7 
cycles) the systolic matrix multiplication of two quadratic 
matrices of order 3 where the elements of a matrix A are fed 
into the array by the rows and the elements of the matrix B are 
fed into the array by the columns. Hence, we have a movement 
in two directions. The elements of the resulting matrix C are 
stationary. 

III. DEFINITION OF THE LATENCY 

Definition: The latency for the matrix product 

BA×  is the time between the first entry of the elements of 

the matrices A  and B , until the last element of the product is 
calculated.  

In fig. 2 it is given the graphical representation of the 

latency (denoted by L ), which in fact is the time needed for 
data to move along the critical path. 

From fig. 2 it can be concluded that the latency can be 
divided into three parts and the total latency can be expressed 
as:  

                           dpddde LLLL ++=                        (1) 

where deL  is called the data entry time and it is the time 

between the entry of the first element and the entry of the last 

element of the critical path. The second part, ddL , is called the 

data delay time and it is equal with the number of steps that the 

data delay before entering in the first PE of the array. And dpL  

is called the data processing time and it is the time required for 
moving and processing of each data from each PE in the 
critical path. 
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IV. THE LOWER BOUND OF LATENCY 

As we know, systolic arrays have a high degree of 

regularity and locality. Regularity means that the 

repetitiveness of the interconnections of just one or few PEs, it 

makes possible to draw the whole array. On the other hand, 

locality is both a space and time feature, and it means that 

each PE can only interact with its nearest surrounding 

neighbors, and any transaction from one PE to the next PE is 

completed in only one unit time delay. 
Taking into the consideration these two features of systolic 

arrays, we can give a methodology for finding the lower bound 

of the latency ( minL ) for two-dimensional systolic arrays. 

Since the I/O bandwidth is fixed and it is equal to n2 , and on 

the other hand the total number of the input elements is 
22n  

(two matrices by 
2n  elements), we get that the number of 

steps required for the data entry is nnn =22 2
. Because in 

the first step (when the element is transferred to the systolic 
array) the element is immediately entered into the first PE, we 
have 

1−= nLde . 

 
Furthermore, because we want to calculate the minimal 

latency ddL  can be taken to be zero. Hence 

                             ( ) dpLnL +−= 1min .                        (2) 

Because of the features of regularity and locality, there are 
four different connection schemes for systolic arrays. The 
connection schemes depend on the so called fan-out (the 
number of inputs that can be connected to an output) of PEs. 
The fan-out can take values 1, 2, 4 and 8. It cannot take value 
greater than 8 because of the feature of space-locality. In figure 
3 are given models of these four connections. We are also 
analyzing the case of triangular array with fan-out=3. 

The simplest case is when the fan-out is 1, and it is 
presented in the figure 4. 

In this case each element of the matrices A  and B has to 
travel through n  PEs, and there are necessarily n  time cycles. 

Thus, nLdp =  and finally: 

                      ( ) 121min −=+−= nnnL                    (3) 

In the case when the fan-out is equal to 2, we present two 
different schemes. The first one is presented in figure 5. 

In this case, in each time cycle, the elements of the matrix 

A (respectivelyB ) are distributed into 2 new PEs, and after k  
steps the total number of PEs through which the elements are 
passed is: 

( )1212...221
321

−⋅+=++++
====

k
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The elements of A (respectivelyB ) must take part in n  
PEs. Therefore we have an additional condition for the value 

of k , which is: 

                 ( )
2

1
121

+
≥⇒≥−+
n

knk                  (4) 

From the inequality (4), we have that 212 +≥ nLdp , 

and therefore: 

          ( ) 
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The second scheme with the fan-out 2 is presented in fig. 6. 
In this case, the number of PEs in which the elements of the 

matrix A (respectivelyB ) pass in each time cycle is given by 
the formula: 
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Similarly as in previous case, we can put the condition 

( ) nkk ≥+ 21 . After solving the quadratic inequality 

(taking only the solution with positive value) we have 
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There are some other schemes with the fan-out being equal to 

2 as well, but generally the value of minL is the same like in 

the last obtained result.  
 In the case when the fan-out is equal to 3, we present the 
triangular systolic array given in the figure 7. 

 Similarly as in the second case with fan-out 2 we have the 
following distribution of PEs in which the elements of the 

matrix A (respectivelyB ) pass in each time cycle: 

( )
2

1
...321

321 +
=++++

==== kk
k
ktttt

 

 We can conclude that it is the same as in the case of second 
option with fan-out 2, therefore the minimum latency will have 
the same value. 

 In the same manner like in the case with the fan-out=2, 
there are different schemes for the case with the fan-out=4. In 
our analysis it is considered the case given in figure 8, which is 
more appropriate design for the fan-out=4. 

 According to fig. 8, the number of PEs versus t  will be: 
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From the condition nkk ≥−+ )1(21  (finding the positive 

solution of the quadratic inequality) we have that 

( ) ( ) 21212121 −+≥⇒−+≥ nLnk dp  and 

therefore: 
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 The last case is the array with the fan-out=8. The graphical 
representation of this case is given in figure 9. 

 From fig.9 we can conclude that the number of PEs visited 

each time by the elements of the matrix A (respectivelyB ) is 
given by: 
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n  PEs are reached when the obtained value is greater then n . 
Hence, 
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From the analysis done with all kinds of fan-outs, we 

can conclude that with systolic arrays it is impossible to 

achieve latency equal to n  with bandwidth n2 . The lower 

bound for the latency approximately is equal to 2nn + , 

and this is obtained for the fan-out=8. So, the latency 

decreases when the fan-out increases. The only possibility to 

have the latency to be equal to n , is to achieve the result 

1=dpL , which is impossible to be achieved in the case of 

systolic arrays for matrix multiplication. 
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Fig. 1 first two cycles of matrix multiplication on systolic array 
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Fig. 2 Graphical representation 
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Fig.3 Connection schemes of systolic arrays 
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Fig.4 Data availability when fan-out=1 
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Fig. 5 Data availability when fan-out=2 (first option) 
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Fig. 6 Data availability when fan-out=2 (second option) 
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Fig. 7 Data availability when fan-out=3 (triangular array) 
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Fig. 8 Data availability when fan-out=4 
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Fig. 9 Data availability when fan-out=8 
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